Earth as a planet

Part 1: With Global Geophysics Towards the Origin of Life

Part 2: From the Evolution of Plate Tectonics to the Rise of O2

Vlada Stamenković Jet Propulsion Laboratory California Institute of Technology

Petnica, Serbia
Workshop in Geology & Geophysics of the Solar System
June 22-July 1 2018

Part 1: Thermal Evolution, magnetic field & H₂

- Heat transport
- Magnetic field
- Redox (r): H₂

Part 1: Thermal Evolution, magnetic field & H₂

- Heat transport
- Magnetic field
- Redox (r): H₂

Thermal evolution models

Thermal evolution models

Viscosity controls heat flow

"Classic" Earth: Viscosity is $\eta(T)$

Heat transport

We need $\eta(T, P)$

Stamenković + (2011, 2012)

Viscosity through melting curves

Heat transport

$$\eta(P,T) = \frac{R_g d^m}{Am_{mol}} \cdot \frac{T \cdot \rho(P,T)}{D_{eff}(P,T)} = \frac{R_g d^m}{D_0 Am_{mol}} \cdot T \cdot \rho(P,T) \cdot \exp\left(\frac{H^*(P)}{R_g T}\right) \quad (1)$$

$$H^*(P) = \xi R_g T_{melt}(P)$$

$$\frac{d \ln(T_{melt})}{dP} = \frac{2\gamma_{\alpha}}{K_T \cdot (1 + 2\gamma_{\alpha} \alpha T_{melt})} \approx \frac{2 \cdot (\gamma_{\alpha} - \Delta(P))}{K_T},$$
(3)

$$\gamma_{\alpha}(\rho, T) = \frac{\alpha K_T}{\rho C_V} = \frac{\alpha K_S}{\rho C_P} = \frac{\gamma_{vib}(\rho) - T m_{AH} a(\rho)}{1 - a(\rho) \cdot T}$$
(4)

Stamenković + (2011)

What has changed for the Earth with η(T,P)?

- We can satisfy constraints
- ► Longer melt (~Gyr)
- What is the effect on the magnetic field?

Impact of $\eta(T,P)$ on the magnetic field

Heat transport

Magnetic field

Magnetic field: a look inside the outer core

Heat transport

Magnetic field

Magnetic field: a look inside the outer core

Heat transport

Magnetic field

Earth's magnetic field: A "classic" paradox?

Heat transport

Magnetic field

Continuous dynamo

Stamenković + (2018, in prep)

Heat transport & magnetic field

- Heat transport
- Magnetic field

Heat transport & magnetic field

- Heat transport
 - Magnetic field

- We can satisfy constraints
- Longer melt (few Gyr)
- More sluggish lower mantle convection
- Continuous dynamo

Geophysical H₂ generation

- Heat transport
- Magnetic field
- Redox (r): H₂

Geophysical H₂ generation: From field to model

- Heat transport
- Magnetic field
- Redox (r): H₂

Stamenković (2015)

H₂: Time variability on Earth

- Heat transport
- Magnetic field
- Redox (r): H₂

Stamenković (2015); Stamenković + (20178 in prep)

H₂: Function of Fe/Mg

- Heat transport
- Magnetic field
- Redox (r): H₂

Stamenković (2015); Stamenković + (2018, in prep)

H₂: Testing our Earth model on Mars with TGO

- Heat transport
- Magnetic field
- Redox (r): H₂

Stamenković (2015); Stamenković + (2018, in prep)

Geophysical H₂ generation

- Heat transport
- Magnetic field
- Redox (r): H₂

Geophysical H₂ generation

- Heat transport
- Magnetic field
- Redox (r): H₂

- Strongly timedependent
- ▶ Peak after ~1-2 Gyr
- Very low today
- Mars = testbed

Part 1: Thermal Evolution, magnetic field & H₂

- Heat transport
- Magnetic field
- Redox (r): H₂

DATA: From Earth

- Paleothermometers (Evolution).
- Paleomagnetic record (Dynamo).
- Seismology (Rheology, Dynamics).
- Modern Hydrogen/Methane generation via serpentinization, radiolysis, and Fischer-Tropsch type reactions - deep versus shallow processes.
 - Aqua de Ney (CA),
 - The Cedars (CA),
 - ▶ Zlatibor (SERBIA), and many more.

DATA: From Earth to Mars

- Methane and hydrogen maps with ExoMars TGO (2017)?
- Local methane variation with MSL?
- Insight?
- Mars 2020?
- Potential missions beyond 2020?

DATA: From Earth to Mars to TRAPPIST-1

The TRAPPIST-1 planets are our chance to constrain global geophysics on Earth!

- Close & spectroscopically characterisable transiting planets.
- Earth-size but variable composition/ structure/insolation.
- ▶ Spectroscopy with HST to infer atmospheric composition & volcanic activity (O₂, H₂, S, Mg, Ca,...).
- lo-Jupiter-like dynamo interaction to infer dynamo with LOFAR.
- We are getting ready for JWST!

Conclusions

- Mantle viscosity is strongly pressure-dependent.
 - ▶ The evolution of the Earth strongly depends on initial conditions and a probabilistic thermal evolution approach is needed.
 - ▶ Longer lifetime for dynamos and melting on Earth.
 - More sluggish lower mantle convection.
- Time- and spatially fluctuating H₂ production predictable for the Earth. H₂ formation by serpentinization starts only after ~I-2 Gyr, strongly dependent of Fe/Mg ratio and mineralogy.
- We need to focus on Earth but we must simultaneously include the diversity of planets to unveil the fundamental principles at work on Earth.
 - Mars helps us constrain the fundamental processes at work, which we could not do on Earth alone - ExoMars TGO, MSL, and MarsX.
 - The TRAPPIST-1 system allows us to explore "many Earths".

Part 1: Thermal Evolution, magnetic field & H₂

- Heat transport
- Magnetic field
- Redox (r): H₂

Part 2: Plate tectonics & O₂

- Tectonic mode
- Redox (o): O₂

A greater picture: Global geophysics & life

- Heat transport
- Tectonic mode
- Magnetic field
- Redox (r): H₂
- Redox (o): O₂

The evolution of plate tectonics

Tectonic mode

Classic steady-state stresses

Tectonic mode

Stamenković + (2016)

Different tectonic modes

Two temperature Temperature High viscosity (gray) Non-dim. Surface and Basal Heat Flux & yielding (yellow) isosurfaces slice **a**) Plate Tectonics Regime 0.04 0.05 0.06 0.07 0.08 0.09 0.03 b) 20 -10 Episodic Regime 0.02 0.025 0.030 0.035 c) 20 10 Stagnant Lid Regime 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 Log10(Viscosity) **Temperature** Non-dim. time min max

Tectonic mode

Stamenković + (2016)

Away from thermal equilibrium

Away from thermal equilibrium

Away from thermal equilibrium

Away from thermal equilibrium

- Plate tectonics becomes less efficient when planet is hotter.
- This is opposite to the "classic" behavior!
- How plate tectonics depends on planet properties (e.g., water, Fe/Mg, etc.) changes dramatically.

Method: "Good" or "Bad"

Probabilistic approach

Tectonic mode

Stamenković & Seager (2016), Stamenković (2018, in prep)

From hot plumes to cool maintenance?

Tectonic mode

Stargenkeniko&i&reuero(26)14)

Water distribution and plate tectonics

Tectonic mode

Stamenković & Seager (2016), Stamenković (2018, in prep)

Stamenković + (2016)

Asthenospheric channels and plate tectonics

$$MN = \eta_A/d_A^3$$

Asthenospheric channels and plate tectonics

Tectonic mode

Stamenković + (2016)

The evolution of plate tectonics

The evolution of plate tectonics

- Non-equilibrium is critical
- Bottom-up?
- **Early start**
- Maintenance selfregulating
- Wet on top, dry inside otherwise flop
- Asthenospheric channels as drivers

Towards oxygen

- Tectonic mode
- Redox (o): O₂

Towards the rise of oxygen

- Tectonic mode
- Redox (o): O₂

"O₂ - plate tectonics" feedback?

Tectonic mode

Redox (o): O₂

Stamenković & Seager (2016), Stamenković (2018, in prep)

How to oxidize rocks? An exotic example

▶ Tectonic mode

Redox (o): O₂

O₂: Testing our Earth model on Mars

Tectonic mode

Redox (o): O₂

O₂: Testing our Earth model on Mars

Tectonic mode

Redox (o): O₂

O₂: Testing our Earth model on Mars

Tectonic mode

Redox (o): O₂

Towards oxygen

- Tectonic mode
- Redox (o): O₂

Towards oxygen

- Tectonic mode
- Redox (o): O₂

- Positive plate tectonics-O₂ feedback?
- Aerobic oases without photosynthesis?
- Mars is breathable today
- We can test on Mars oxidation processes

Part 2: Plate tectonics & O₂

- Tectonic mode
- Redox (o): O₂

Conclusions

- Non steady-state processes critical for plate tectonics
 - A bottom-up approach for plate tectonics? The lower mantle is driver.
 - Early start and self-regulation.
 - ▶ Water distribution is pivotal. Wet on top, dry inside, otherwise flop?
 - Asthenospheric channels enhance driving stresses.
- We can now study oxygen-plate tectonics feedbacks and explore the formation of geophysics-climate-driven oxygen oases.
 - ▶ Preliminarily results, but we find a positive feedback boosting rising O_2 levels.
 - Oxygen oases possible without photosynthesis of GOE.
- We need to better understand oxidation processes.
 - Modeling oxygen solubilities in various brines as a function of pressure and temperature shows surprising behavior that could allow on Earth and Mars oxygen oases without photosynthesis.

Earth as a planet

Vlada.Stamenkovic@jpl.nasa.gov www.HabiLabs.com